Chapter 7 Radio Signals and Measurements

Types of AC Waveforms – Sine

- Most fundamental waveform
- Also describes rotating motion
- $A = \sin(\theta)$
- $2 \pi \text{ radians} = 360 \text{ degrees}$

•
$$f = \frac{1}{T}$$
 and $T = \frac{1}{f}$

T = time to complete 360 degrees

Types of AC Waveforms - Complex

Complex Waveforms

- Signals composed of more than one sine wave
- Telephone keypads dual-tone multi-frequency (DTMF)
- regular waveforms
 - made up of a sine wave and its harmonics
 - resulting waveform has single overall frequency
 - Lowest frequency sine wave is called the fundamental
- Irregular waveform
 - Made up of sine waves NOT harmonically related
 - Human speech

Complex Waveforms

Sawtooth Waves

- Sine wave at its fundamental frequency
- plus all of its harmonics
- Ramp waveform is reverse

Square Waves

- Sine wave at its fundamental frequency
- plus all of its odd harmonics

Pulse Waveforms

- Consist of narrow bursts of energy, followed by periods of no signal
- Used to transmit information by varying amplitude, rate, width or position

AC Measurements

- For symmetrical waveforms, $V_P = \frac{1}{2} V_{P-P}$
- $V_{RMS} = .707 * V_P$
- the dc voltage that would cause an identical amount of heating to the ac peak voltage (V_P)

AC Measurements for Sine and Square Waves

	Sine Wave	Square Wave
Peak-to-Peak	2 x Peak	2 x Peak
Peak	0.5 x Peak-to-Peak	0.5 x Peak-to-Peak
RMS	0.707 X Peak	Peak
Peak	1.414 x RMS	RMS
Average	0 (full cycle)	0 (full cycle)
	0.637 x Peak (half cycle)	0.5 x Peak (half cycle)

AC Power

•
$$P_{AVG} = V_{RMS} * I_{RMS}$$

•
$$P_{PEAK} = V_{PEAK} * I_{PEAK} = 2 * P_{AVG}$$

$$\bullet \quad P_{AVG} = \frac{V_{RMS}^2}{Z}$$

AC Power

 Peak envelope voltage (PEV) is used to determine power of a complex waveform

•
$$PEP = \frac{(PEV * 0.707)^2}{R_{LOAD}}$$

Electromagnetic Waves

Composed of Electric and Magnetic fields that move through space independently of any component or conductor

Wavelength

Direction

- The fields cannot be separated
- The energy in the wave can be detected as either electric or magnetic force
- The fields are created as a single entity (electromagnetic wave) by the motion of electrons in the transmitting antenna

Polarization

- Orientation of the electric field determines polarization of the wave
- Transmitting antenna's orientation determines wave's polarization
- Vertical electric field is perpendicular to the Earth
- Horizontal electric field parallel to surface of the Earth
- Circular

Test Equipment

- Multimeters, Volt-Ohm-Milliammeter (VOM), Voltmeter
 - Accuracy defined as ± X% of full scale
 - Meter sensitivity specified in ohms-per-volt (Ω/V)
- Dip Meters
 - Used to measure circuit frequency, resonant frequency, inject freq into circuit
 - Coupling should be as loose as possible to prevent loading/reducing accuracy
- Impedance Bridges
 - Works by balancing the two voltage dividers
 - Used to measure SWR

Test Equipment

Frequency Counters

- Counts number of cycles per second of a signal
- Accuracy is determined by the quality of its reference crystal and expressed in parts per million (ppm)

-
$$Error(in hz) = \frac{f(in Hz) * counter error(in ppm)}{1,000,000}$$

Oscilloscope

- Used to observe/measure high-speed and complex waveforms
- Specified in terms of (vertical amplifier) bandwidth
- Screen grid; Vertical ($^{volts}/_{division}$) & Horizontal ($^{time}/_{division}$)
- Keep ground connection short as possible
- Adjust probe compensation with reference square wave (per scope user manual)

Test Equipment

- Oscilloscopes operate in the Time domain
 - Display signal's amplitude versus time
 - Horizontal (x) axis represents time ($^{time}/_{division}$)
 - Vertical axis calibrated in volts per division
- Spectrum Analyzer operate in the Frequency domain
 - Display signal's amplitude versus frequency
 - Horizontal (x) axis represents frequency $\binom{frequency}{division}$
 - Vertical axis normally calibrated in dB per division

Uses for Spectrum Analyzers

- Use where the frequency content of a complex signal is of primary importance (i.e. amplifiers, oscillators, detectors, mixers, filters, etc.)
- Check the output from a transmitter or amplifier for signal quality
 - Remember to attenuate the signal level to the analyzer to typically 10 mW or less
- Check SSB for two-tone intermodulation distortion (IMD)
- Measure isolation between input and output ports of a 2 meter duplexer

Modulation Systems

Adding and later recovering information from radio frequency signals.

- Amplitude Modulation
- Frequency Modulation
- Phase Modulation
- Pulse Width Modulation

FCC Emission Designations

- International Telecommunication Union (ITU) identifiers
- May be up to 5 characters but 3 is common
- Common in Amateur Radio:

NON – Unmodulated carrier	F3E – FM telephony
A1A – CW	G3E – Phase modulated telephony
A3E – AM, DSB, Full carrier telephony	F1B – FSK RTTY
J3E – AM, SSB, suppressed-carrier telephony	F2B – AFSK RTTY
J3F – AM, SSB, suppressed-carrier television	F1D – FM data

FM/PM Modulation

- Signal frequency varies at the rate of the modulating-signal frequency
- Amount of frequency change is proportional to modulating signal amplitude = deviation
- Deviation Ratio = ratio of max deviation to highest modulating frequency
 - Constant for a given transmitter/modulator

Modulation Index

 Ratio of maximum signal frequency to instantaneous modulating frequency

$$MIndex = \frac{D_{MAX}}{m} = \frac{\text{peak deviation hz}}{\text{instant modulating frequency hz}}$$

- Frequency modulator MIndex inversely proportional to modulating frequency
- Phase modulator MIndex constant regardless of modulating frequency
- FCC Limits MIndex to maximum of 1.0

Pulse Modulation

- Transmitting analog information as a series of pulses; on/off pulses = 1/0 digital signal so considered digital data
- Pulse-width modulation
- Pulse-position modulation
- Pulse-amplitude modulation
- Used for R/C control and switching power supplies

Multiplexing

- Combining more than one stream of information into one modulated signal
- Frequency division (FDM) multiple subcarriers
- Time division (TDM) interleaving two or more signals into discrete time slots
- Not to be confused with multi-carrier digital modes which interleave a single signal across multiple carriers to increase transmission speed

Interference and Noise

- Interference/QRM signals that have characteristics of transmitted signals
 - Usually "manmade", arc welder, CFLs, electric motors
- Noise/QRN random natural sources or unintentional generation by non-transmitting equipment
 - Usually "natural" i.e. static crashes from lightning

Intermodulation

- Intermodulation (IMD) multiple frequencies mixed in a non-linear manner
 - Transmitter IMD, nearby transmitted signals mixed in the PA of a transmitter and thus retransmitted
 - Commercial sites may use circulators to eliminate
 - Receiver IMD, strong received signal causes front end to go non-linear and may mix other undesired signals producing spurious received signal
 - Good receiver dynamic range is important to mitigate

Static & Noise

- Static from lightning is especially common on HF bands and can sometimes be heard much higher
- With good propagation it is possible to hear static from lightning on the other side of the world on medium HF frequencies
- Precipitation picking up a charge as it falls can cause rain or snow static

AC Line Noise

- Unfortunately one of the more common forms of QRM (manmade)
 - Caused by arching between electrical conductors or electrical leakage across an insulator that is breaking down
 - Caused by small motors with brushes
 - Light Dimmers, motor speed controls

Locating QRN & QRM Sources

- Process of elimination
 - Run your receiver off battery and shut off main breaker to your house
 - Noise went away; it's in your house; shut off all circuit breakers, main back on, turn on circuit by circuit till noise comes back, then start turning off/unplugging devices on that circuit
 - Noise stayed; it's not in your house; more work required, portable AM receiver can be used to track down in some cases

Automotive Noise

- Ignition Noise make sure the ignition components are in good condition and making secure connection
- Charging system radio powered direct from battery may help, make sure battery is in good condition, radio and antenna properly grounded
- Instruments bypass capacitor on sender/motor

Electronic Noise Reduction

- Do NOT use with Digital Modes!
- Noise Blanker shuts
 off signal for short
 duration "blanking"
 noise; good for impulse
 noise

Electronic Noise Reduction (cont.)

 DSP – electronic filter that adapts to noise pattern and eliminates it; especially good for notch filters

Questions

